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Abstract 13 

This paper describes a novel image processing technique that detects wave breaking and tracks 14 

waves in the surf zone using machine learning procedures. Using time-space images (timestacks), 15 

the algorithm detects white pixel intensity peaks generated by breaking waves, confirms these 16 

peaks as true wave breaking events by learning from the data’s true colour representation, clusters 17 

individual waves, and obtains optimal wave paths. The method was developed and tested using 18 

data from four sandy Australian beaches under different incident wave and light conditions. 19 

Results are a representation of the position of the wave front front through time, i.e., space-time 20 

data, which when shown overlaid on the original timestack shows the high degree of accuracy of 21 

the method developed here. The utility of the method is demonstrated in two ways: 1) through a 22 

comparison between the instantaneous wave speed calculated from the wave paths with the 23 

theoretical shallow water wave speed, and 2) by obtaining optical intensities that could be 24 

translated into wave roller lengths. The algorithm developed here has the potential to improve 25 

understanding numerous nearshore process such as bore propagation and capture in the surf zone, 26 
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surf zone energy dissipation, surf beat and infragravity waves, and as a direct speed input for depth 27 

inversion methods. 28 

1 Introduction 29 

Wind-generated gravity waves are the main driver for nearshore dynamics (Komar, 1998; 30 

Battjes, 1998). In particular, surf and swash zone processes have a significant impact on the 31 

subaqueous-subaerial nearshore boundary, and are the primary driver of sediment exchange in this 32 

region (Masselink and Puleo 2006).  Several recent studies have focused on wave-by-wave (Power 33 

et al., 2010; Postacchini and Brocchini, 2014; Martins et. al, 2017b) or swash-by-swash (Power et 34 

al., 2011; Padilla and Alsina, 2017; Martins et al., 2017a) approaches to investigate nearshore 35 

phenomena, but have found high variability for nearly all processes investigated (e.g., Power et 36 

al., 2010; Power et al., 2011; and Martins et al., 2017a). Such results suggest that, even under 37 

laboratory conditions, the full the evolution of shallow water waves on a wave-by-wave scale must 38 

be considered in order to understand the full wave transformation in the nearshore.  39 

 Very few studies have tracked the evolution of individual waves across the surf zone of 40 

natural beaches. To the authors’ knowledge, only Suhayda and Pettigrew (1977), Yoo et al. (2011), 41 

and Power et al. (2015) have made attempts. Suhayda and Pettigrew (1977) used a method in which 42 

individual waves were videoed and visually compared to wave poles in the surf zone. Such a 43 

method has the disadvantage of being extremely labour intensive and is thus only suitable for 44 

tracking a few waves. Yoo et al. (2011) used the Radon transform to track individual waves on 45 

timestack images (see Aagaard and Holm, 1989), but only presented results for averaged wave 46 

conditions which may not account for the full variability of wave heights and speeds seen in the 47 

surf zone. More recently, Power et al. (2015) tracked waves using closely spaced arrays of pressure 48 

transducers (PTs) deployed in the surf zone. This method has the advantage of tracking parameters 49 
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such as the wave height (𝐻) and the local water depth (ℎ) but was sensitive to the definition of the 50 

temporal searching window which could lead to a different number of waves being tracked. 51 

To address the difficulties in tracking individual waves, and thus to further understanding 52 

of the variability observed in surf and swash zone processes, this paper describes a novel algorithm 53 

for tracking waves in the surf zone that uses computer vision, peak detection, and machine learning 54 

techniques. The method is similar in concept to the method of Power et al. (2015) in that it tracks 55 

peaks in timeseries in a cross-shore orientation, however, the method presented here uses data 56 

derived from coastal video imagery instead of PT measurements. The algorithm exploits the fact 57 

that colour signature of breaking waves is significantly different to the colour signature of calm 58 

water, unbroken waves, or sand. This colour signature of breaking waves is seen as white pixel 59 

peaks in timeseries extracted from timestacks. When these peaks are clustered and tracked using 60 

machine learning methods, it is possible to fully track the paths of breaking waves in the surf zone. 61 

The method derived here gives similar results to the Radon transform method of Yoo et al. (2011) 62 

and Almar et al. (2014) but can be directly applied to any timestack image without the need of 63 

complex transforms (e.g., Radon or Hough transforms), thus greatly reducing computation costs 64 

and analysis complexity. More importantly, the method described here is, to the authors’ 65 

knowledge, the only method capable of automatically tracking the occurrence of wave overrunning 66 

(bore merging) in the nearshore. 67 

This paper is organized as follows: Section 2.1 describes the study sites, data collection 68 

methods and datasets to be investigated, and Sections 2.2 and 2.3 describe how wave breaking 69 

events are detected, confirmed, and tracked. Section 3.1 presents the results in the forms of the 70 

obtained wave paths overlayed on to the original timestacks, and a comparison to the Yoo et al.’s 71 

(2011) method. Sections 3.2 and 3.3 present brief examples of applications of the method: in 72 
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Section 3.2, the instantaneous wave speed is directly obtained from the wave paths, and in Section 73 

3.3, phase-averaged optical intensities are obtained and compared to Haller and Catálan’s (2009) 74 

results.  Section 4 discusses of the results presented in Section 3, and conclusions are given in 75 

Section 5. 76 

2 Methods 77 

2.1 Field data 78 

Video imagery of the nearshore was collected at four different News South Wales (NSW) 79 

beaches covering different wave breaking, light, and grazing angle conditions (Figure 1 and Table 80 

1). For each experiment, a consumer-grade high-resolution video camera (Sony HDR-CX240) 81 

recorded the surf and swash zones at 25 frames per second from an elevated location (headland or 82 

a house balcony) for several hours. All study sites were surveyed at low tide using a total station 83 

to obtain a beach profile and at least four ground control points (GCPs) per site. The coordinate 84 

system for all data was such that the PT line is cross-shore oriented (positive seaward); the video 85 

and survey data were adjusted accordingly. Beach profiles were surveyed from the location of the 86 

first foredune to the maximum depth possible, limited by wave breaking conditions. The beach 87 

slope (𝑡𝑎𝑛𝛽) was calculated across the surf and swash zones from the beach berm to the end of 88 

the profile. Transformed spectral offshore wave parameters (significant wave high, peak period 89 

and mean wave direction) were obtained from the NSW Nearshore Wave Forecast toolbox (NSW-90 

OEH, 2017) at the nearest 10m isobath. The surf zone spectral wave height (𝐻𝑚0) and period 91 

(𝑇𝑚01) were calculated from data measured by a PT deployed in the mid to outer surf zone using 92 

the methods of Holthuijsen (2007). Additionally, a cross-shore array of evenly spaced PTs was 93 

deployed in the surf and swash zones along the timestack transect (Figure 1 and Table 1). 94 
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Three of the four study sites are classed as intermediate beach states in the Australian 95 

morphodynamic beach model (Wright and Short, 1984), which is the most frequently occurring 96 

beach state for microtidal, swell-dominated Australian beaches. During the data collection period, 97 

One Mile Beach (OMB, Figure 1-a) had a low tide terrace morphology with rhythmic beach cusps, 98 

and plunging breakers. Werri Beach (WB, Figure 1-b) had a steep beach profile, especially the 99 

beach face, low tide terrace morphology (without apparent rhythmic beach cusps), and plunging 100 

breakers. Birubi Beach (BB, Figure 1-d) had a very gently sloping profile, one longshore bar, and 101 

spilling breakers. Seven Mile Beach, Gerroa, (SMB, Figure 1-c), was the only dissipative study 102 

site, and had a gently sloping profile, no apparent longshore bars or troughs, and spilling breakers. 103 

Reflective beaches were not considered because of the absence of wave breaking before the outer 104 

limit of the swash zone, which precludes them from any significant surf zone data collection. 105 

The light conditions and camera grazing angles varied between the experiments. OMB and 106 

WB were imaged from elevated headlands with clear sky conditions. SMB was imaged from a 107 

house balcony located on the elevated peninsula to the north of the beach with a shallow grazing 108 

angle and had moderately overcast conditions, which resulted in low-contrast images. BB was 109 

recorded from a non-ideal grazing angle (very shallow) with clear skies, which resulted in a large 110 

amount of specular reflection, particularly in the swash zone. The BB experiment also had strong 111 

winds throughout the duration of the experiment, which resulted in large amounts of foam in the 112 

surf zone, making wave paths less defined. 113 



Manuscript submitted to Coastal Engineering 

- 6 - 
 

 114 

Figure 1. Time averaged (Timex) images for the four data collection sites: a) One Mile Beach 115 

(OMB), b) Werri Beach (WB), c) Seven Mile Beach (SMB), and d) Birubi Beach (BB). All Timex 116 

images were calculated from 10 minutes of video data resampled at 2Hz following Holland et al. 117 

(1997). The black dashed lines indicate the timestack and PT transect locations. 118 

Table 1. Data for each beach: location, date of the experiment, total number of PTs (nPT) 119 

deployed, PT array cross-shore spacing (dx), beach slope (tanβ) from the berm to the end of the 120 

profile, offshore significant wave height (𝐻𝑚0∞
), offshore peak period (Tp, offshore mean wave 121 

direction (Dm), Offshore Iribarren number (𝜉𝑜 =  𝑡𝑎𝑛𝛽 √𝐻𝑚0∞
/[(𝑔 2𝜋⁄ ) ∗ 𝑇𝑝

2]⁄ ), spectral 122 
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significant wave height in the surf zone (Hm0), spectral significant wave period in the surf zone 123 

(Tm01), and observed breaker type.   124 

Location Date nPT 

dx 

(m) 

tanβ 

(-) 

𝑯𝒎𝟎∞  

 (m) 

Tp 

(s) 

Dm 

(°) 

ξo  

(-) 

Hm0 

(m) 

Tm01 

(s) 

Breaker 

(observed) 

One Mile 

Beach 

07/08/14 12 3 0.076 0.98 13.8 E 1.32 0.81 9.37 plunging 

Seven Mile 

Beach 

13/08/14 12 10 0.03 1.18 12.7 SE 0.44 0.57 7.98 spilling 

Werri Beach 16/08/14 13 3 0.355 0.96 7.8 SE 3.53 0.92 8.26 

Heavy 

plunging 

Birubi Beach 06/07/17 9 6 0.02 0.78 8.4 S 0.12 0.43 10.24 

Spilling/weak 

plunging 

2.2 Wave breaking detection 125 

All video imagery was pre-processed following Holland et al. (1997) using the algorithm 126 

of Hoonhotut et al. (2015). To ensure a high temporal resolution for wave tracking, the camera 127 

data were downsampled to 10Hz instead of the usual rate of 2Hz that is most frequently used in 128 

the literature. Each frame was projected into metric coordinates and frames were grouped into five 129 

minutes batches, the optimal duration for this analysis. From these frame batches, a cross-shore 130 

array of pixels was extracted and stacked in time (dashed black lines in Figure 1 and Figure 2-b), 131 

resulting in an image known as timestack (Aagaard and Holm, 1989) (Figure 2-a). Using these 132 

timestack images, two methods were developed to identify wave breaking depending on the 133 

breaker type. Firstly, for spilling and plunging breakers, pixel intensity timeseries were extracted 134 

every 10cm in the cross-shore direction (with sub-pixel accuracy) and pixel peaks were identified 135 

using a peak detection algorithm that iteratively searches for local extrema in the timeseries. Pixel 136 
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intensity local maxima were found to closely correspond to white pixels generated by foam 137 

corresponding to the crests of breaking waves (Figure 2-c). Secondly, for strongly plunging 138 

breakers, wave breaking was detected as sharp pixel intensity transitions in the timestack by 139 

applying the horizontal Sobel operator (Sobel, 1968) and tracking the location of the resulting 140 

edges in the cross-shore orientation by obtaining the argument of the maxima of the detected edges 141 

at every timestamp. The second method was developed in order to track the exact front edge of the 142 

wave in cases where the original local maxima method showed high sensitivity to the white 143 

signatures of residual foam in the surf zone, which was more problematic in the detection of heavy 144 

plunging breakers. 145 

In most cases, the identified pixel peaks directly corresponded to white foam associated 146 

with breaking wave crests; however, there were several instances where specular light reflection 147 

both offshore and in the swash zone was incorrectly identified as wave breaking (Figure 3-a). To 148 

avoid such misclassifications, all identified peaks were confirmed as true breaking waves (i.e., 149 

white foam) by a machine learning algorithm that obtained information from the timestack’s true 150 

colour representation (i.e., from the raw RGB values). The training dataset for this algorithm was 151 

created by manually defining regions in the timestack that corresponded to breaking waves, sand, 152 

and undisturbed water (i.e., unbroken waves). Each training region was defined once for each 153 

location from the first five minute data batch using a Graphic User Interface (GUI) built in the 154 

tracking algorithm and was re-used for all subsequent data batches. For each of these regions, a 155 

dominant colour was obtained using a colour quantisation procedure (Celebi, 2011), and the 156 

previously identified pixel peaks were tested against these colours (Figure 4-d). For an identified 157 

pixel peak to be confirmed as a true wave breaking event, its true colour needed to be more than 158 

50% similar to the dominant colour of the wave breaking region defined in the training dataset. 159 
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The metric used for the comparison was the colour similarity (𝛥𝐸∗) calculated using the CIE 160 

(International Commission on Illumination) standard computed in the CIECAM02 (CIE Color 161 

Appearance Modelling for Color Management Systems) colour space (CIE, 2017). The metric 𝛥𝐸∗ 162 

is a direct measurement of how different (or similar) two colours are, and it is calculated as the 163 

Euclidian distance between these two colours in an appropriated colour space. In the simplest case, 164 

the RGB (Red, Green and Blue) colour space, it is written as:  165 

𝛥𝐸∗ = √(𝑅1 − 𝑅2)2 + (𝐺1 − 𝐺2)2 + (𝐵1 − 𝐵2)2      (1) 166 

in which the subscripts 1 and 2 represent two different colours. Simpler, non-perceptual, colour 167 

spaces (e.g., RGB and XY; Smith and Guild, 1931) do not correspond directly to the way humans 168 

perceive colour because the human eye has a lower tolerance to some colours (particularly blue 169 

shades) causing the Euclidian distance to not to be perceived uniformly across the colour space 170 

(Lou et al., 2006, CIE2007). To avoid this issue, the more sophisticated CIECAM02 colour space, 171 

which is perceptually uniform and should thus closely correspond to the human colour perception 172 

(Lou et al., 2006), was used instead. Therefore, the algorithm described here mimics the human 173 

perception of breaking wave crests as seen in the timestack images. 174 
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 175 

Figure 2. Example of the wave breaking detection process. a) Subset (300s) of a timestack 176 

generated from data collected at One Mile Beach. The continuous blue line indicates the cross-177 

shore location where the timeseries shown in c) was extracted for the pixel peak detection and 178 

colour classification. The red squares show the space-time occurrence of the wave breaking events 179 

as identified by the machine learning procedure. b) Timex image calculated for the same time 180 

period shown in a). The black dashed line indicates the cross-shore transect along which the 181 

timestack shown in a) was extracted, and the blue cross indicates the location where the timeseries 182 

shown in c) was extracted. c) Pixel intensity timeseries coloured using the corresponding true 183 

colour values. The red markers indicate the pixel peaks that correspond to broken waves as 184 

identified by the machine learning procedure. d) Pixel data from c) represented in the XY (Smith 185 

and Guild, 1931) colour space (for illustration purposes only) showing the corresponding 186 
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dominant colours for each region (sand, foam, and undisturbed water) which were used to assess 187 

the pixel peaks identified breaking waves. 188 

2.3 Wave tracking 189 

The peak detection and classification step described above produces a point-cloud-like 190 

representation of wave breaking events in the space-time domain (red circles in Figure 3-a), i.e., it 191 

does not allocate pixel peaks to a particular wave. To group pixel peaks that correspond to a single 192 

wave and to effectively track that wave, the DBSCAN clustering method (Esther et al, 1996) was 193 

used (Figure 3-b). This unsupervised classification method clusters data based on two criteria: 1) 194 

the distance between each data point (𝑒𝑝𝑠), and 2) the minimum number of points required to form 195 

a cluster (𝑛𝑚𝑖𝑛). Before applying the algorithm, the data were transformed to scaled coordinates 196 

by dividing the time (space) occurrence of each breaking event by the total length along the time 197 

(space) axis. This was done as a requirement for using the distance metrics implemented in the 198 

DBSCAN algorithm. As the algorithm is not optimized to work with wave data, it occasionally 199 

grouped two different waves into one cluster if the distance criterion was met. Another issue with 200 

the DBSCAN algorithm was that instances of bore merging/captures were always grouped as one 201 

cluster. For cases where two waves merged with a clear separation between the two wave paths, 202 

(e.g., wave 6 in Figure 3-b), it was possible to split the wave paths using the Random Sample 203 

Consensus (RANSAC) estimator (Fischler and Bolles, 1981). In this technique, the points forming 204 

one wave path were identified as being inliers whereas the points of the secondary wave were 205 

identified as outliers, enabling the cluster to be split into two separate clusters. Other clustering 206 

errors (e.g., waves 5 and 27 in Figure 2-b) were manually fixed in QGIS using data exported from 207 

the wave paths into an appropriate file format (ESRI® shapefiles). The procedures described in 208 

Sections 2.2 and 2.3, as a well the functionality to export and import data into QGIS, were coded 209 
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in Python and rely heavily on the Scikit-Learn (Pedregosa et al, 2011) and Open-CV (ITSEEZ, 210 

2014) packages for machine learning and computer vision, respectively. The code and a sample 211 

dataset (OMB) are available at https://github.com/caiostringari/pywavelearn1. 212 

 213 

Figure 3. Conversion of point could data to grouped waves. a) Wave breaking events in the time-214 

space domain before (blue and red markers) and after (red markers) the machine learning 215 

procedure. These data are initially not assigned to any wave. b) Points clustered into discrete wave 216 

events whereby the clustering is done based on the squared Euclidian distance between each point 217 

                                                           
1 The repository is currently in private mode. It will be made public available once the paper is accepted for 

publication. Before publication, access can be granted upon contacting the first author with an email informing a 

valid GitHub account, or contacting the first author directly via GitHub at https://github.com/caiostringari. 

https://github.com/caiostringari/pywavelearn
https://github.com/caiostringari/pywavelearn
https://github.com/caiostringari
https://github.com/caiostringari


Manuscript submitted to Coastal Engineering 

- 13 - 
 

and the minimum number of members in a cluster (eps=0.005 and nmin=15, in this example). Each 218 

cluster represents a unique wave traveling shoreward (excluding bore-merging events). 219 

For further analyses, it was useful to obtain a continuous representation of each wave path. 220 

This was done by interpolating the detected breaking events in each cluster to a target frequency 221 

(2Hz) using a quadratic spline interpolator, and fitting a (minimum) second-order ordinary least-222 

squares (OLS) model. A confidence interval (CI) for each wave path was also defined to account 223 

for the uncertainties from both the wave breaking detection and interpolation steps. Two criteria 224 

were used to define these confidence intervals. The first criterion considered the curve defined by 225 

the OLS model ± one quarter of the standard deviation in both time and space. The second 226 

criterion, which was only used in the cases where the standard deviation in time was less than one 227 

second, added a buffer of 0.5s to each side of the curve defined by the OLS model. The definition 228 

of second method was necessary in order to create a CI for very short-period waves that had no 229 

significant standard deviations in either time or space, and to keep the method’s consistency. 230 

Examples of the continuous wave paths defined by the OLS model (coloured lines) and the 231 

confidence intervals (solid lines) are shown in Figure 4. 232 

3 Results 233 

3.1. Wave tracking 234 

Figure 4 shows examples of the results produced by the tracking algorithm applied to the 235 

datasets shown in Figure 1. The algorithm tracked individual waves in the surf and swash zones 236 

efficiently and accurately in all four cases. For OMB, SMB, and BB datasets, the algorithm was 237 

set to track local maxima in the cross-shore pixel intensity timeseries, whereas for WB, the Sobel 238 

version was used due to the strong plunging characteristics of the breakers during the experiment. 239 
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Varying the peak detection algorithm (local maxima or Sobel edge detection) resulted either in 240 

similar results (e.g., OMB dataset), or completely wrong results (See Section 4). The method 241 

performed well even under low-contrast (SMB) and non-optimal grazing angles (SMB and BB), 242 

and the machine learning step of the algorithm could correct falsely identified intensity peaks in 243 

the majority (>90%) of the cases (e.g., Figure 3-a). 244 

A comparison between the number of waves in the surface elevation record (see Figure 5b) 245 

and the number of waves tracked from the video imagery during a one hour interval at all locations 246 

was also carried-out.  Considering all waves (broken and unbroken) in the PT records, the 247 

algorithm tracked, in average, 75% of the waves. When the one third highest waves are considered 248 

(i.e., waves which 𝐻 ≥ 𝐻𝑚0), the algorithm tracked the vast majority of the waves (average of 249 

97.25%), and when the 10% highest waves are considered (𝐻1/10), the algorithm tracked all waves. 250 

Table 2 shows the results of this analysis sorted by location. However, it should be noted that this 251 

comparison is not expected to produce directly comparable results because it compares two 252 

different types of waves: tracked waves (i.e., broken waves) and all waves (i.e., broken and 253 

unbroken waves). 254 

In comparison to the method of Yoo et al. (2011), the method developed here tracks 30% 255 

more waves, and represents a significant improvement in the number of breaking points detected. 256 

In fact, from visual inspection, the vast majority (>95%) of the breaking points were detected due 257 

to the algorithm’s capability to learn colour transitions (blue to white). In comparison, Yoo et al’s., 258 

(2011) method only detected 42% of the breaking points. 259 
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Table 2. Comparison between the number of waves in the PT record and the number of waves 260 

tracked by the algorithm in each location during a one hour interval. 261 

 Location Birubi Beach One Mile Beach Seven Mile Beach Werri Beach 

N. PTs in the surf zone 7 4 4 3 

N. of  waves (all PTs) 1970 1495 1309 1236 

% Tracked Waves 72% 79% 76% 75% 

% Trac. W.  𝐻 ≥ 𝐻𝑚0  98% 97% 96% 98% 

% Trac. W.  𝐻 ≥ 𝐻1/10 100% 100% 100% 100% 
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Figure 4. Results of the wave tracking algorithm for: a) One Mile Beach. b) Seven Mile Beach. c) 263 

Werri Beach. d) Birubi Beach. Panels from e) to h) show a subset of 20 seconds for the same 264 

locations as in a) to d). The dashed coloured lines show the unique wave paths defined by the OLS 265 

model after corrections using the RANSAC estimator and minimal manual fixes. The black dashed 266 

lines show the confidence intervals for each wave. Panels i) to l) show the beach profile and the 267 

mean water level during the experiment (thick blue line). Note that the vertical exaggeration (V. 268 

Ex.) varies between panels. 269 

3.2 Instantaneous surf zone wave speed 270 

To illustrate of the potential of the method developed here, results for the observed 271 

instantaneous surf zone wave speed are presented for a one hour subset of collocated PT and video 272 

imagery from the OMB dataset. This dataset was chosen because it had a high grazing angle, clear 273 

skies, and, more importantly, because it had the lowest rectification errors (average of 0.11m 274 

calculated based on back-projection of GCPs). Using the wave paths defined by the OLS model, 275 

the instantaneous wave phase speed (𝑐𝑤𝑝) can be calculated as  276 

𝑐𝑤𝑝 = 𝑙𝑖𝑚
𝛥𝑡→0

(
𝛥𝑥

𝛥𝑡
) =

𝑑𝑥

𝑑𝑡
          (2) 277 

where 𝛥𝑡 is the time interval between two measurements and 𝛥𝑥 is spatial displacement of the 278 

wave front. Figure 5-a shows the results of Equation 2 applied to the OMB data subset (see Table 279 

1 and Figure 4-a). 280 

As the video timestacks were collocated with the PTs deployed in the surf zone, it was 281 

possible to identify both the velocity calculated from the remotely sensed wave paths and the water 282 

depths recorded in situ by the PTs. For each five-minute batch of data, the wave paths were linked 283 

to the matching individual waves in the pressure transducer record that were obtained using a local 284 
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extrema analysis following Power et al. (2010) (Figure 5-a and b, red markers and dashed 285 

connection lines). Although the camera and the PTs clocks were synchronized before the 286 

deployment, a residual delay between the two datasets (usually between 1 and 10 seconds) was 287 

observed in all datasets. This time difference was primarily due to small differences between the 288 

camera clock and the PT clocks introduced in the programing stage which unfortunately were not 289 

fully accounted for in the synchronization step. To optimize the alignment between the peaks in 290 

the pressure record and the wave paths, an averaged optimal time delay for each data run was 291 

obtained using a cross-spectral analysis and then the PT timeseries was shifted to align with the 292 

timestack. 293 

The wave speed calculated from Eq. 2 was then compared to the wave crest (ℎ𝑐𝑟) and 294 

trough depths (ℎ𝑡𝑟) (Figure 5-c and d). The results showed that the crest depth accounted for more 295 

variability (relatively, 55% more) than the trough depth. In addition, a comparison between the 296 

calculated wave speed and the theoretical shallow water wave speed (𝑐𝑡ℎ = √𝑔(ℎ + 𝜂) = √𝑔ℎ𝑐𝑟 297 

where ℎ is the mean water depth, and 𝜂 is the instantaneous water surface elevation) was carried 298 

out. Only data seaward of the surf-swash boundary were considered in this analysis (see Figure 5-299 

a). The surf-swash boundary was obtained directly from the timestack as the lowest observed 300 

rundown in each 5min data batch. Figure 5-e showed that the theoretical wave speed was only 301 

partially correlated (68%) to the optically derived wave speeds. The correlation coefficients were 302 

calculated on unbinned data using the Pearson product-moment correlation coefficient (𝑟𝑥𝑦) and a 303 

two-tailed normal distribution for 𝑝 values. The observed root mean square error (RMSE) was of 304 

0.69 m.s-1, the mean absolute error was 0.55 m.s-1, and there was virtually no bias (-0.002 m.s-1). 305 

To validate the results shown in Figure 5-e, the difference between the time of travel of 306 

individual waves in the PT record and in the wave paths was calculated for two adjacent PTs (at 307 
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x=84m and x=81m) was calculated (Figure 6-a). The mean absolute error for this analysis was 308 

0.25s, which is six times smaller than the threshold used by Power et al. (2015) to distinguish 309 

between individual waves in the surf zone using PT data only, and falls within the confidence 310 

intervals for the wave paths shown in Figure 4-a. In addition, the mean time of travel was 0.63s 311 

for both PT and wave path, thus resulting in the same averaged wave speed for both datasets (4.74 312 

m.s-1).  No significant trends or biases were observed when this analysis was performed (see Figure 313 

6-b).  314 
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 315 

Figure 5.  a) Example of the instantaneous wave speeds calculated using Equation 2 for five 316 

minutes of data collected at OMB. The black line represents the location of the PT used in b), the 317 

hatched area represents the region from where PT data were obtained for the analyses in c), d) 318 

and e), and the dashed green line shows the surf-swash boundary. b) Pressure transducer 319 

timeseries data collected at OMB for the same time interval. The blue squares represent the local 320 

minima, and the red squares the local maxima obtained from a wave-by-wave analysis following 321 
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Power et al. (2010). The dashed red lines indicate the optimal alignment between the timestack 322 

tracked wave crests and the wave crests from the wave-by-wave analysis. c) Comparison between 323 

the wave speed (𝑐𝑤𝑝) and the crest depth (ℎ𝑐𝑟) obtained from the PT deployed at x=78m. d) 324 

Comparison between the wave speed (𝑐𝑤𝑝) and the trough depth (ℎ𝑡𝑟). e) Comparison between the 325 

measured instantaneous wave speed (𝑐𝑤𝑝) and the theoretical shallow water wave speed (𝑐𝑡ℎ =326 

√𝑔(ℎ + 𝜂) for one hour of data for four PTs spaced 3 meters apart starting at the PT at x=84m in 327 

the shoreward direction. Data are binned to aid visualisation and the number of bins was 328 

calculated following the Freedman-Diaconis rule (Freedman and Diaconis, 1981). The dashed 329 

black line in e) shows the one-to-one correspondence, and the dashed green line shows a linear 330 

regression to the data without consideration of an intercept term. In c) d), and e), 𝑟𝑥𝑦 is the Pearson 331 

product-moment correlation coefficient and 𝑝 was calculated using a two-tailed normal 332 

distribution. All regressions shown in Figure 5 used unbinned data. 333 

 334 

Figure 6.  a) Absolute difference in time of travel between individual waves in the based on two 335 

adjacent PTs (x=84m and x=81m) and based on the wave paths at the same location. b) 336 
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Comparison between the times of travel calculated based on the PT and on the WP data (black 337 

markers). The dashed black line in b) shows the bisector. 338 

3.3. Optical intensities of breaking waves 339 

Another application of the algorithm developed here is to obtain the optical intensities of 340 

the breaking waves which can be translated into wave roller lengths, as per the method of Haller 341 

and Catálan (2009). This method relies on phase-averaging pixel intensity timeseries in both time 342 

and space and projecting these intensities into the timestack domain in order to obtain wave roller 343 

lengths. Under laboratory conditions, and for a narrow bandwidth wave spectrum, the optical 344 

intensities correlate very well with surface elevation data (𝜂) thus justifying the application of the 345 

method (Haller and Catálan, 2009; their Figures 4 and 5). However, the same authors suggested 346 

that for natural surf zones, where the wave spectrum bandwidth is typically broader than in a 347 

laboratory context, a more sophisticated means of wave tracking would be needed to perform a 348 

similar analysis. The method developed here has the required characteristics to enable a similar 349 

analysis to be carried out on natural surf zone data. 350 

Using the data described in Section 3.2, optical intensities were initially extracted at three 351 

cross-shore locations (Figure 7a - 78m, 81m and 84m). At each location, a buffer of 2.5 meters in 352 

the cross-shore orientation was used to extract and average optical intensity timeseries in order to 353 

remove short-period period oscillations (similar to the method of Haller and Catálan, 2009; their 354 

Figure 2). These cross-shore locations coincided with the locations of three PTs from which 355 

individual wave pressure time series were extracted following the method of Power et al. (2010) 356 

(See Figure 5-a). Each individual wave was then interpolated to a regular grid, normalized by its 357 

period (T), shifted so that all crests are aligned, and the median wave profile was obtained for each 358 

PT (Figure 7-b, c, and d). For each individual wave in the PT data, an analogue timeseries was 359 
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extracted from the optical intensity data. In order to ensure that the surface elevation and pixel 360 

intensity timeseries were aligned as best as possible (i.e., so that the time delays seen in Figure 6-361 

b are minimised), a wave-by-wave optimal time delay was obtained via cross-correlation analysis 362 

and, if needed, the pixel intensity timeseries was shifted in order to match the PT data. From these 363 

individual optical timeseries, a median intensity profile was calculated (Figure 7-e, f, and, g). In 364 

contrast with Haller and Catálan (2009), the field data shown here did not show a strong match 365 

between the optical intensities and the median water surface profile. This occurs because in natural 366 

surf zones, with a random wave field, each individual wave is at a different stage of evolution at 367 

any given cross-shore location (e.g., the waves between 50s and 100s in Figure 7-a).  368 

To minimize the variability seen in the optical intensities at fixed cross-shore locations 369 

(i.e., Figure 7-b), the same analysis was repeated at equivalent locations along the individual wave 370 

propagation pathways across the surf zone. This was done by obtaining the length of the wave 371 

propagation path from the break point to the bore collapse for each individual wave and using this 372 

to define comparable hydrokinematic locations for each individual wave (Svendsen et al., 1976). 373 

Three locations were investigated: 1) the breakpoint (defined as 5% of the wave path length after 374 

the break point location; Figure 7-a, orange markers), 2) the mid-point of wave transformation 375 

across the surf zone (50% of the wave path length after the breakpoint location; Figure 7-a, blue 376 

markers), and 3) the point immediately prior to bore collapse (95% of the wave path length after 377 

the break point location or 5% of the wave path length before the point of bore collapse (Figure 7-378 

a, green markers). The points of bore collapse were manually defined using the QGIS data 379 

exchange interface described in Section 2.3. At each of these locations, and for each wave, 15s 380 

optical intensity timeseries with the centre of wave path at one-third of the wave duration were 381 

extracted and then phase-averaged to obtain a median optical intensity (Figure 7-h, i, and j). This 382 
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time interval was chosen to cover the temporal evolution at a given hydrokinematic location but 383 

does not necessarily represent the period of individual waves due to the random characteristic of 384 

the wave field. It was used instead of the normalised wave period also because there was no clear 385 

way to define wave periods based only on the pixel record since the local minima in the pixel 386 

record does not necessary correspond to wave troughs. 387 

In comparison to Haller and Catálan’s (2009) method (which relies on a regular wave field 388 

and thus a given distance consistently represents a given hydrokinematic region in the surf zone), 389 

the approach taken here showed improved clustering of the optical intensities and smoother 390 

medians suggesting that this method is a sensible alternative to define hydrokinematic for 391 

individual waves. The optical intensities obtained at equivalent hydrokinematic regions could be 392 

re-projected into the timestack domain and then be used to estimate wave roller lengths for an 393 

irregular wave field; however, this is beyond the scope of this paper but will be investigated in a 394 

future publication.  395 
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 396 

Figure 7.  Comparison between the phase-averaging method of Haller and Catálan (2009) at 397 

fixed spatial and at variable spatial (fixed hydrokinematic) locations for obtaining optical 398 

intensities from timestack images. a) Five minute subset of a timestack for OMB (300s). The 399 
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dashed black line represents the location of the PT at x=78m and the red swath represents the 400 

spatial region used for averaging the pixel intensity signal (see panels b-d). The square markers 401 

indicate variable hydrokinematic regions for each tracked wave (see text for details).  b, c, and 402 

d) Individual waves (thin lines) and medians (thick lines) for PT data at three different cross-403 

shore locations (x=84m, x=81m, and x=78m ). e, f, and g) Individual pixel intensities (thin lines) 404 

and respective medians (thick lines) at the same locations shown in b), c), and d). h, i, and j) 405 

Individual pixel intensity and respective medians (thick lines) at the three different wave-by-wave 406 

hydrokinematic locations. 407 

4 Discussion 408 

The novel remote sensing method for wave breaking detection and wave tracking in the 409 

surf zone presented here consists of two main components: 1) detecting wave breaking events and 410 

correcting errors using the data’s true colour representation with machine learning techniques, and 411 

2) clustering the detected breaking events into unique wave paths and obtaining optimal wave 412 

paths using an OLS model. The wave tracking step successfully tracked waves in the surf zone 413 

when applied to four sandy Australian beaches with varying morphodynamic characteristics, 414 

grazing angles, and light conditions. The two peak detection implementations (the cross-shore 415 

pixel intensity extrema and the horizontal Sobel operator) were accurate at detecting white pixel 416 

peaks that directly corresponded to the crests of breaking waves in the varying conditions in which 417 

data were collected. In the cases where the peak detection step misidentified pixel peaks, the 418 

machine learning colour comparison algorithm was able to correct errors due to its capability to 419 

learn from the data’s true colour (See Figure 3). Although the wave crests of unbroken waves 420 

appeared clearly in some cases (e.g., Figure 4-a and c), there was not enough colour contrast 421 

between the wave crest and the adjacent undisturbed water to apply the same techniques used to 422 
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distinguish between the crest of broken waves and undisturbed water, thus this algorithm remains 423 

restricted to breaking waves. 424 

The most problematic step was the clustering of the identified wave breaking instances, in 425 

which the DBSCAN algorithm was highly sensitive to the minimum distance (𝑒𝑝𝑠) parameter. 426 

The optimal 𝑒𝑝𝑠 values were found after extensive trial and error, which was found to be time 427 

consuming, and there did not seem to be a consistent method to obtain the 𝑒𝑝𝑠 value nor any 428 

correlation to any environmental parameters (e.g., 𝐻𝑚0 or 𝑇𝑝); for example, it varied from 0.005 429 

in the OMB dataset to 0.15 in the SMB dataset. On the other hand, the minimum number of points 430 

of cluster parameter (𝑛𝑚𝑖𝑛) was far more consistent between the datasets, with 𝑛𝑚𝑖𝑛 = 20 working 431 

well for all data tested. Once the optimal 𝑒𝑝𝑠 and 𝑛𝑚𝑖𝑛 were identified for each location, the 432 

number of wave paths being misclustered was significantly reduced. The RANSAC algorithm was 433 

effective at separating wave paths clustered as one wave in the cases where two waves merged 434 

(e.g., wave 6 in Figure 3-b), however, all other erroneous clustering required manual corrections. 435 

The average time required to run the method, assuming that the timestack image has already been 436 

obtained, the optimal 𝑒𝑝𝑠 and 𝑛𝑚𝑖𝑛 are known, and there is no need for manual corrections, is less 437 

than 10 seconds on a standard laptop, which is at least one order of magnitude less than the Radon 438 

or Hough transforms methods. Initially, if the 𝑒𝑝𝑠 and 𝑛𝑚𝑖𝑛 values are unknown, the method takes 439 

10 to 15 minutes to produce good results for a five minute timestack depending on the users 440 

familiarity with the method. Once eps and nmin are known for a site, the time required to run the 441 

method would decrease for subsequent timestacks but is depending on the number of clustering 442 

errors that cannot be automatically fixed using RANSAC. 443 

In general, the full method (i.e., wave breaking detection, colour machine learning, 444 

clustering, optimal wave path from OLS, and wave path correction) worked well for different 445 
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incident wave conditions but was somewhat sensitive to light and grazing angle conditions, with 446 

better tracking results occurring under optimal imaging and light conditions (i.e., clear skies and 447 

high grazing angle). This is consistent with results from other remote sensing algorithms (e.g., Yoo 448 

et al., 2011, Catálan and Haller, 2008). 449 

The optically derived wave speeds correlated poorly with the predictions from the linear 450 

wave theory (𝑟𝑥𝑦 = 0.68) and there is a high intercept term in the regression, although the RMSE 451 

(0.69m.s-1), MAE (0.55m.s-1) and Bias (-0.002m.s-1) are relatively low. The results showed that 452 

linear theory greatly underestimated observed wave speeds in deeper water depths and 453 

overestimated in shallower water depths.  However, the water depth range in this paper was 454 

relatively small (of the order of 1m, see Figure 5-c), and these results may not hold for other depth 455 

ranges. Nonetheless, similar results have been observed by Postacchini and Brocchini (2014) 456 

(particularly the binned values seen in their Figure 20), and when the same regression analysis is 457 

completed for the data presented here (dashed green line in Figure 5-e), a coefficient of correlation 458 

(𝑅2) of 0.67 was found, which is close to the values reported by these authors. 459 

The over-estimation of the wave speed by the theory at deeper water depths (outer surf 460 

zone) and subsequent underestimation at shallower water depths (inner surf zone) has been 461 

previously observed in natural surf zones (Suhayda and Pettigrew, 1977). There are physical 462 

mechanisms that would account for such differences, e.g., sea-swell waves propagating in the crest 463 

of infragravity waves propagate faster than it would be predicted by the theory and the reverse 464 

situation (sea-swell waves in the trough of an infragravity wave) is also possible (Tissier et al, 465 

2015). In addition, some of the analysed data were very close to the surf-swash boundary (see 466 

Figure 5-a); a region where downrush and undertow could lead to a reduction of the wave speed 467 

that would not be accounted by the theory (Komar, 1978). Nonetheless, the exact physical 468 
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mechanisms responsible for the observed differences are not fully understood and will be 469 

investigated in a subsequent publication.  470 

 Another factor that could contribute to the observed differences is vertical pixel 471 

misregistration due to non-optimal grazing angle and proximity of the camera to the timestack 472 

transect (Catálan and Haller, 2008). Unfortunately, no data were available to directly measure the 473 

vertical pixel misregistration in the dataset presented here. Considering that the measured 474 

horizontal RMSE for rectification in the OMB dataset was 0.11m, and considering that the vertical 475 

error is the same order of magnitude or less, the error in the wave speed calculations due to vertical 476 

pixel misregistration should be of the order of 1%. Moreover, the results for the comparison 477 

between times of travel of individual waves in the PT and wave path data presented in Section 3.1 478 

(see Figure 6) are another strong suggestion that the trends seen in difference between the observed 479 

and theoretical wave speeds are not artefacts produced by errors in the rectification process.  480 

In the comparison between optical intensities and surface elevation profiles, when the 481 

method described in Haller and Catálan (2009) was applied to the OMB dataset, no strong 482 

correlation between optical intensity and the surface elevations was observed when the phase-483 

averaging was done at fixed spatial locations. When the method was adapted to take into account 484 

the variable spatial locations of hydrokinematic locations for individual waves, the correlation 485 

improved significantly. This is due to the fact that in natural surf zones, where the wave spectrum 486 

is rarely narrow, individual waves are at different stages of their hydrokinematic evolution at a 487 

given spatial location.  It should be noted that, although a robust wave-by-wave cross-correlation 488 

method was used to align surface elevation profiles and optical intensities for individual waves, 489 

delays of up to 1 second between the wave crest and the maximum optical intensity were still 490 

observed in the data presented here, which could explain some the variability seen in Figure 7e-g. 491 
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These delays were mainly generated by strong white pixel peaks from foam being advected in the 492 

front of the wave crest that were an optical intensity maxima but did not necessarily corresponded 493 

to the wave crest in the pressure record. Although these delays could be responsible for some of 494 

the observed scattering, a high degree of optical variability would still be expected when extracting 495 

pixel intensity timeseries for individual waves at a fixed cross-shore location due to the wide 496 

bandwidth spectrum present in natural surf zones, as previously mentioned. 497 

The method presented here has the potential to allow for novel investigations of several 498 

surf and swash zone process. To demonstrate the utility of the method we have examined the 499 

variability of instantaneous surf zone wave speeds and the variability of optical intensities 500 

associated with breaking waves. Potential other applications of this method include, but are not 501 

limited to: quantification of bore propagation and capture in the surf zone (e.g., Tissier et al., 2015, 502 

Garcia-Medina et al., 2017), investigation of the roles of reflected waves at the surf-swash 503 

boundary (Martins et al., 2017a), quantification of surf zone energy dissipation (as it provides a 504 

direct measurement of the fraction of broken waves in the surf zone) (e.g., Thornton and Guza, 505 

1983, Baldock et al., 1998, Alsina et al., 2007), improved quantification of the interactions between 506 

incident wind-generated waves, infragravity waves, and run-up heights (e.g., de Bakker et al., 507 

2016; de Moura and Baldock, 2017a; Padilla and Alsina, 2017), and as a direct input for 508 

bathymetry inversion methods (Holman et al., 2013; Catálan and Haller, 2008; van Dongeren et 509 

al., 2008; Bergsma et al., 2016).  510 

5 Conclusions 511 

This paper has presented a novel method for tracking individual waves in the surf zone 512 

using data derived from nearshore imagery. The hybrid computer vision, peak detection, and 513 

machine learning method was tested using data from four microtidal, swell-dominated, sandy 514 
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Australian beaches under varying incident wave, grazing angle, and light conditions, and for 515 

varying morphodynamic beach states. Results showed that the method successfully tracked waves 516 

in all four locations with better results obtained when grazing angles and light conditions were 517 

optimal (i.e., clear skies and high grazing angles). In these cases, the algorithm tracked all the 518 

broken waves and correctly identified all initial break point locations. The method was then used 519 

to derive instantaneous surf zone wave speeds which were compared to theoretical values derived 520 

from in-situ measurements. The results of this analysis showed that the theoretically predicted 521 

speeds agreed poorly with the optically derived speeds. Additionally, optical intensity profiles 522 

were extracted and compared to surface elevation profiles on a wave-by-wave basis. These results 523 

showed that phase-averaging in natural surf zones, or under wide bandwidth conditions, should be 524 

performed at equivalent hydrokinematic regions in the surf zone as identified on a wave-by-wave 525 

basis. The method developed in this paper has the potential to be used in novel investigations of 526 

several other surf zone phenomena that require wave tracking. 527 
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